127 research outputs found

    The Yin-Yang Property of Chinese Medicinal Herbs Relates to Chemical Composition but Not Anti-Oxidative Activity: An Illustration Using Spleen-Meridian Herbs

    Get PDF
    ā€œYin-Yangā€ and ā€œFive Elementsā€ theories are the basis theories of Traditional Chinese Medicine (TCM). To probe and clarify the theoretical basis of these ancient Chinese wisdoms, extensive efforts have been taken, however, without a full success. In the classification of TCM herbs, hot, cold and neutral herbs are believed to possess distinct profile of chemical compositions of which the compounds should have different polarity and mass: this view provides a new perspective for further illustration. To understand the chemical properties of TCMs in the classification of ā€œYin-Yangā€ and ā€œFive Elements,ā€ 15 commonly used herbs attributed to spleen-meridian were selected for analyses. Chemically standardized water extracts, 50% ethanol extracts and 90% ethanol extracts were prepared and subjected to different analytic measurements. Principle component analysis (PCA) of full spectrum of HPLC, NMR and LC-MS of the extracts were established. The results revealed that the LC-MS profile showed a strong correlation with the ā€œYin-Yangā€ classification criterion. The Yang-stimulating herbs generally contain more compounds with lower molecular weight and less polar property. Additionally, a comprehensive anti-oxidative profiles of selected herbs were developed, and the results showed that its correlation with cold and hot properties of TCM, however, was rather low. Taken together, the ā€œYin-Yangā€ nature of TCM is closely related to the physical properties of the ingredients, such as polarity and molecular mass; while such classification has little correlation with anti-oxidative property. Therefore, the present results provide a new direction in probing the basic principle of TCM classification

    Kaempferol as a flavonoid induces osteoblastic differentiation via estrogen receptor signaling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Flavonoids, a group of compounds mainly derived from vegetables and herbal medicines, chemically resemble estrogen and some have been used as estrogen substitutes. Kaempferol, a flavonol derived from the rhizome of <it>Kaempferia galanga </it>L., is a well-known phytoestrogen possessing osteogenic effects that is also found in a large number of plant foods.</p> <p>The herb <it>K. galanga </it>is a popular traditional aromatic medicinal plant that is widely used as food spice and in medicinal industries. In the present study, both the estrogenic and osteogenic properties of kaempferol are evaluated.</p> <p>Methods</p> <p>Kaempferol was first evaluated for its estrogenic properties, including its effects on estrogen receptors. The osteogenic properties of kaempferol were further determined its induction effects on specific osteogenic enzymes and genes as well as the mineralization process in cultured rat osteoblasts.</p> <p>Results</p> <p>Kaempferol activated the transcriptional activity of pERE-Luc (3.98 Ā± 0.31 folds at 50 Ī¼M) and induced estrogen receptor Ī± (ERĪ±) phosphorylation in cultured rat osteoblasts, and this ER activation was correlated with induction and associated with osteoblast differentiation biomarkers, including alkaline phosphatase activity and transcription of osteoblastic genes, <it>e.g</it>., type I collagen, osteonectin, osteocalcin, Runx2 and osterix. Kaempferol also promoted the mineralization process of osteoblasts (4.02 Ā± 0.41 folds at 50 Ī¼M). ER mediation of the kaempferol-induced effects was confirmed by pretreatment of the osteoblasts with an ER antagonist, ICI 182,780, which fully blocked the induction effect.</p> <p>Conclusion</p> <p>Our results showed that kaempferol stimulates osteogenic differentiation of cultured osteoblasts by acting through the estrogen receptor signaling.</p

    Stimulation of Apolipoprotein A-IV expression in Caco-2/TC7 enterocytes and reduction of triglyceride formation in 3T3-L1 adipocytes by potential anti-obesity Chinese herbal medicines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chinese medicine has been proposed as a novel strategy for the prevention of metabolic disorders such as obesity. The present study tested 17 Chinese medicinal herbs were tested for their potential anti-obesity effects.</p> <p>Methods</p> <p>The herbs were evaluated in terms of their abilities to stimulate the transcription of Apolipoprotein A-IV (ApoA-IV) in cultured Caco-2/TC7 enterocytes. The herbs that showed stimulating effects on ApoA-IV transcription were further evaluated in terms of their abilities to reduce the formation of triglyceride in differentiated 3T3-L1 adipocytes.</p> <p>Results</p> <p>ApoA-IV transcription was stimulated by <it>Rhizoma Alismatis </it>and <it>Radix Angelica Sinensis </it>in a dose- and time-dependent manner in cultured Caco-2/TC7 cells. Moreover, these two herbs reduced the amount of triglyceride in differentiated 3T3-L1 adipocytes.</p> <p>Conclusion</p> <p>The results suggest that <it>Rhizoma Alistmatis </it>and <it>Radix Angelica Sinensis </it>may have potential anti-obesity effects as they stimulate ApoA-IV transcription and reduce triglyceride formation.</p

    Kai-Xin-San, a Chinese Herbal Decoction Containing Ginseng Radix et Rhizoma, Polygalae Radix, Acori Tatarinowii Rhizoma, and Poria, Stimulates the Expression and Secretion of Neurotrophic Factors in Cultured Astrocytes

    Get PDF
    Kai-xin-san (KXS), a Chinese herbal decoction prescribed by Sun Simiao in Beiji Qianjin Yaofang about 1400 years ago, contains Ginseng Radix et Rhizoma, Polygalae Radix, Acori Tatarinowii Rhizoma, and Poria. In China, KXS has been used to treat stress-related psychiatric diseases with the symptoms of depression and forgetfulness. Although animal study has supported the antidepression function of KXS, the mechanism in cellular level is still unknown. Here, a chemically standardized water extract of KXS was applied onto cultured astrocytes in exploring the action mechanisms of KXS treatment, which significantly stimulated the expression and secretion of neurotrophic factors, including NGF, BDNF, and GDNF, in a dose-dependent manner: the stimulation was both in mRNA and protein levels. In addition, the water extracts of four individual herbs did not significantly stimulate the expression of neurotrophic factors, which could explain the optimized effect of KXS in a herbal decoction. The KXS-induced expression of neurotrophic factors did not depend on signaling mediated by estrogen receptor or protein kinase. The results suggested that the antidepressant-like action of KXS might be mediated by an increase of expression of neurotrophic factors in astrocytes, which fully supported the clinical usage of this decoction

    Verification of the formulation and efficacy of Danggui Buxue Tang (a decoction of Radix Astragali and Radix Angelicae Sinensis): an exemplifying systematic approach to revealing the complexity of Chinese herbal medicine formulae

    Get PDF
    This article exemplifies a systematic approach to revealing the complexity of Chinese herbal medicine formulae through three levels of scientific research: standardization of herbs, verification of ancient formulae and mechanism studies. We use Danggui Buxue Tang (DBT) as an example for this approach. Among thousands of traditional Chinese medicine herbal formulae, almost all of which consist of multiple herbs, DBT is one of the simplest. Containing only two herbs, namely Radix Astragali (RA) and Radix Angelicae Sinensis (RAS), DBT is traditionally used to treat ailments in women. The weight ratio of RA to RAS in DBT was prescribed to be 5:1 as early as in 1247 AD. In addition to advanced chemical analysis of herbal constituents, DNA genotyping techniques have been developed for reliable standardization of RA and RAS. Chemical evaluation shows that main active constituents in DBT, including astragaloside IV, calycosin, formononetin and ferulic acid, were most abundant after extraction at the RA to RAS ratio of 5:1, whereas other tested RA to RAS ratios only gave sub-optimal levels of the active constituents. Biological evaluation indicates that bioactivities of DBT, e.g. immuno-modulatory, oesteotropic and estrogenic effects are also best exerted at the RA to RAS ratio of 5:1. Correlation analysis demonstrates statistically significant relationship between the tested chemical constituents and tested bioactivities. Up- and down-regulation of expression of some genes as potential biomarkers has been detected by using gene chip technology. This systematic approach on the basis of herbal standardization, chemical and biological verification and mechanism studies, as exemplified in this article, will be useful to reveal the complexity of not only DBT but also other Chinese medicine herbal formulae

    Anti-oxidative effects of the biennial flower of Panax notoginseng against H2O2-induced cytotoxicity in cultured PC12 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Radix notoginseng </it>is used in Chinese medicine to improve blood circulation and clotting; however, the pharmacological activities of other parts of <it>Panax notoginseng </it>have yet to be explored. The present study reports the anti-oxidative effects of various parts of <it>Panax notoginseng</it>.</p> <p>Methods</p> <p>Various parts of <it>Panax notoginseng</it>, including the biennial flower, stem-leaf, root-rhizome, fiber root and sideslip, were used to prepare extracts and analyzed for their anti-oxidation effects, namely suppressing xanthine oxidase activity, H<sub>2</sub>O<sub>2</sub>-induced cytotoxicity and H<sub>2</sub>O<sub>2</sub>-induced ROS formation.</p> <p>Results</p> <p>Among various parts of the herb (biennial flower, stem-leaf, root-rhizome, fiber root and sideslip), the water extract of the biennial flower showed the strongest effects in (i) inhibiting the enzymatic activity of xanthine oxidase and (ii) protecting neuronal PC12 cells against H<sub>2</sub>O<sub>2</sub>-induced cytotoxicity. Only the water extracts demonstrated such anti-oxidative effects while the ethanol extracts did not exert significant effects in suppressing xanthine oxidase and H<sub>2</sub>O<sub>2</sub>-induced neuronal cytotoxicity.</p> <p>Conclusions</p> <p>The present study demonstrates the biennial flower of <it>Panax notoginseng </it>to have neuroprotection effect on cultured neurons and the underlying protection mechanism may involve anti-oxidation.</p

    Isolation and characterization of ZK002, a novel dual function snake venom protein from Deinagkistrodon acutus with anti-angiogenic and anti-inflammatory properties

    Get PDF
    Introduction: Pathological angiogenesis, the abnormal or excessive generation of blood vessels, plays an important role in many diseases including cancer, diabetic retinopathy, psoriasis, and arthritis. Additionally, increasing evidence supports the close linkage between angiogenesis and inflammation. Snake venoms are a rich natural source of biologically active molecules and carry rich potential for the discovery of anti-angiogenic and anti-inflammatory modulators.Methods: Here, we isolated and purified a novel protein, ZK002, from the venom of the snake Deinagkistrodon acutus, and investigated its anti-angiogenic and anti-inflammatory activities and mechanisms.Results: ZK002 was identified as a 30Ā kDa heterodimeric protein of Ī± and Ī² chains, which exhibited anti-angiogenic activity in various in vitro assays. Mechanistically, ZK002 inhibited activation of VEGF signaling and related mediators including eNOS, p38, LIMK, and HSP27. ZK002 also upregulated the metalloproteinase inhibitor TIMP3 and inhibited components of the VEGF-induced signaling cascade, PPP3R2 and SH2D2A. The anti-angiogenic activity of ZK002 was confirmed in multiple in vivo models. ZK002 could also inhibit the in vitro expression of pro-inflammatory cytokines, as well as in vivo inflammation in the carrageenin-induced edema rat model.Conclusion: Our findings highlight the potential for further development of ZK002 as a dual function therapeutic against diseases with involvement of pathogenic angiogenesis and chronic inflammation
    • ā€¦
    corecore